
 Data analysis problem sheet Page 1 of 5 

 

1. Photometry and spectroscopy of Nova Del 2013 (60 p) 

Classical nova V339 Del (Nova Delphini 2013) was discovered by Koichi Itagaki at 6.8 magnitude on 

14 August 2013 at 14:01 UT (MJD = 56518.584). Both professional and amateur astronomers analysed 

the photometry and spectroscopy of the nova. Less than 10 hours after the alert, when the night falls 

at the Piszkéstető Mountain Station of the Konkoly Observatory of the Hungarian Academy of 

Sciences, Hungarian astronomers took the first spectrum data of the nova using the eShel echelle 

spectrograph in the Gothard Astrophysical Observatory of Loránd Eötvös University attached to the 1 

meter telescope of the Konkoly Observatory. 

Refer to Fig 1.1 and Fig 1.2 to complete the questions. The larger versions of Fig 1.1 and Fig 1.2 are 

found on separate A3 papers. 

 

 Fig. 1.1: Nova Del 2013 – Johnson V light curve Fig. 1.2: Nova Del 2013 – Spectra around Hα line 

Fig. 1.1 shows the visual light curve of the nova based on the data downloaded from the website of 

AAVSO (American Association of Variable Star Observers). On the horizontal and vertical axes, the 

Modified Julian Date (MJD = JD−2 400 000.5) of the observations and the Johnson V magnitudes are 

plotted, respectively. The grey circles (about 38000 data points) represent the measured values, while 

the continuous black line is the result of smoothing the data with a Gaussian filter (Full Width at Half 

Maximum = 0.5 day) to define an "average" light curve from the data points. 

The rate of decline can be characterized by the values 𝑡2 and 𝑡3, which show the time interval in days 

in which a nova fades from its maximum brightness by 2 and 3 magnitudes. 

A few empirical formulae between the peak of the absolute magnitude in the V band (𝑀0) and 𝑡2, 𝑡3 

values can be found in the following literature: 

(a) 𝑀0 = −7.92 − 0.81 arctan
1.32−log 𝑡2

0.23
 (Della Valle, M. & Livio, M.: 1995, ApJ 452, 704) 

(b) 𝑀0 = −11.32 + 2.55 log 𝑡2 (Downes, R.A. & Durbeck, H.W.: 2000, AJ 120, 2007) 

(c) 𝑀0 = −11.99 + 2.54 log 𝑡3 (Downes, R.A. & Durbeck, H.W.: 2000, AJ 120, 2007) 

The 𝐸(𝐵 − 𝑉) color excess of Nova Del 2013 (Chochol, D. et al.: 2014, Contrib. Astron. Obs. Skalnaté 

Pleso 43, 330) is: 

𝐸(𝐵 − 𝑉) = 0.184 ± 0.035  

Fig 1.2 shows the nova spectra taken in the wavelength region around the Hα line on six consecutive 

nights before and after the time of the maximum brightness (𝑡0). The individual spectra have been 
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shifted vertically for clarity. The Modified Julian Dates (MJD) of the observations are listed on the 

right hand side of each spectrum slice. 

The Hα line shows the so-called P Cygni profile with very broad wings, which is typical not of novae 

only, but is present in almost all spectral types and is a reliable sign of a massive radial motion of 

matter ejected from the star. The P Cygni profile is composed of a strong, broad emission peak which 

is considered to be centered at the rest wavelength in air 𝜆0 of the line – for Hα 𝜆0 = 6562.82 Å – and 

a usually weaker, blueshifted absorption component. The expansion (radial) velocity of the shell can 

be approximated from the measured wavelength 𝜆 of the absorption peak using the well known 

Doppler formula connecting the displacement ∆𝜆 = 𝜆 − 𝜆0, the radial velocity 𝑣r, and 𝑐, the speed of 

light. 

Assume that the Hα line showing P Cygni profile is excited in the outermost part of the spherically 

expanding shell, and its extent at the moment of taking the first spectrum was still negligible. 

a) From Fig. 1.1, estimate the Modified Julian Date of the peak magnitude (MJD0) and the value 

of the peak magnitude itself. Consider the error of this brightness value to be 0.05m. (3 p) 

b) Estimate the Modified Julian Dates based on the time interval (days) in which the nova has 

faded by 2 and 3 magnitudes, then calculate 𝑡2 and 𝑡3 values. (6 p) 

c) With reference to 𝑡2 and 𝑡3 from (b), determine the peak absolute magnitude of the nova using 

all three empirical formulae listed earlier, calculate their mean (𝑀0) and their standard 

deviation, and consider this latter as the uncertainty of 𝑀0. (5 p) 

The formula for standard deviation: 

𝜎 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

𝑛 − 1
 

d) Using the value of the color excess 𝐸(𝐵 − 𝑉), determine the interstellar extinction 𝐴𝑉 and its 

uncertainty in the direction of the nova. Use 𝑅𝑉 = 3.1, without error. (4 p) 

e) Estimate the distance to the nova and its uncertainty. Give the result in kpc. (11 p) 

f) Measure the central wavelengths of the P Cygni absorption features plotted in Fig. 1.2 (refer to 

magnified version), and calculate the corresponding radial velocities. No error estimation is 

needed. (14 p) 

g) Plot these radial velocities against the Modified Julian Dates of the observations. (6 p) 

h) From the graph in (g), estimate the physical radius of the envelope at the end of the time 

interval. Give the answer in astronomical units (au). (7 p) 

i) Knowing the distance to the nova and the physical radius of the spherical envelope 5 days after 

the discovery, estimate the apparent angular diameter of the envelope then. (4 p)  



 Data analysis problem sheet Page 3 of 5 

 

2. Triply eclipsing hierarchical triple stellar system (90 p) 

HD 181068 was one of the brightest targets which was continuously observed during the almost 4-

year-long primary mission of NASA’s exoplanet-hunter Kepler space telescope. The spacecraft 

observed ≈ 3 − 4 × 10−3 magnitude dimmings  every 0.453 days. (Note: The even dimmings were 

slightly smaller amplitude than the odd ones.) Furthermore, additional 0.007 magnitude, 2.3-day-long 

dimmings were  detected every 22.7 days. 

The correct explanation of this very unusual photometric behaviour was given by Hungarian 

astronomers. They found that HD 181068 is a compact hierarchical triple stellar system seen almost 

edge-on. 

Hierarchical triple star systems consist of three stars; A, B, and C. Two of these stars (B and C) form 

an inner or close stellar binary system, whilst the outer component (star A) orbits at a distance from 

the inner system significantly larger (usually orders of magnitude) than the semi-major axis of the inner 

system. The schematic view of an example of a triple star system is illustrated in Fig. 2.1. 

 

Fig. 2.1: The schematic pole-on view of a hypothetical , hierarchical triple stellar system. The black arrow is directed 

towards the Earth. The thick segments of the three orbits represent the stars’ orbital arcs during an outer eclipse. 

Mathematically, the motion of a hierarchical triple system can be well approximated with two 

unperturbed Keplerian two-body motions; (1)  Keplerian motion of the inner binary. (2) The centre of 

mass of this close binary and the third star revolves on a second Keplerian orbit, “outer binary”. 

In this problem, stars B and C form a P1 = 0.9056768-day-period eclipsing binary, while the centre of 

mass of these stars with star A forms the P2 = 45.4711-day-period outer binary. As the orbital plane of 

this outer orbit is seen almost edge-on from the Kepler spacecraft (and from the Earth), during their 

revolution on the outer orbit, stars B and C eclipse not only each other, but also star A or, a half outer 

revolution later are eclipsed by it, causing the extra dimmings. 
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i. Determination of the physical stellar sizes (and other quantities) from the geometry of the eclipses 

These assumptions are used throughout this section: (1) both the inner and outer orbits are exactly 

circular, (2) the orbital planes of the inner and outer orbits are identical, and (3) this plane is seen 

exactly edge-on (i.e. 𝑖1 = 𝑖2 = 90° and 𝑖rel = 0°). Let’s consider the extra dimmings, which are 

central eclipses (i.e. either occultations or transits – annular eclipses), therefore, these events have 

four contacts. In the case of an ordinary eclipsing binary (or of a transiting exoplanet) at the times 

of the outer contacts the sky-projected disks of the two objects connect with each other at one point 

from outside, while at the inner contacts they approach each other from inside. While this last 

statement is also valid for outer eclipses, the situation becomes more complex, because instead of 

two, three stars are involved into the eclipses. However, despite this fact, we can certainly define 

the times of each contact from the light curve, and furthermore, we can also decide explicitly which 

member of the inner binary is involved in a given contact. (The other member, of course, is always 

star A.) 

In the table below, the accurate times of some contacts of different eclipses observed by the Kepler 

spacecraft, the contact types and the stars are documented. Time is expressed in barycentric Julian 

Days (BJD). 

event no. contact stars BJD 𝜑1 𝜑2 

1 I A, B 2455476.1096 1111111111 1111111111 

II A, C 2455476.4245   

III A, B 2455477.9677   

IV A, B 2455478.4722   

2 I A, B 2455521.5217   

3 III A, C 2455568.9434   

4 I A, C 2455612.4733   

III A, C 2455614.3571   

5 III A, B 2455659.9241   

IV A, C 2455660.2422   

 

a) Given that 𝑇01 = 2455051.2361 and 𝑇02 = 2455522.7318 denote the time of an inferior 

conjunction of the inner and outer binaries respectively (i.e. that time, when, from the 

perspective of the observer, star C eclipses star B, and when star A eclipses the centre of 

mass of stars B and C.) 

Define 

𝜑1(𝑡) = {(𝑡 − 𝑇01) 𝑃1⁄ }, and 𝜑2(𝑡) = {(𝑡 − 𝑇02) 𝑃2⁄ } 

as the photometric phases of the inner and outer binaries respectively. {𝑥} denotes the 

decimal part of the real number 𝑥. If {𝑥} < 0, use {𝑥} + 1 instead. Calculate the phases for 

the times of the tabulated contact events and write the answers in the appropriate 

columns of the table on the answer sheet. Round your answers to four decimal places.

 (10 p) 

b) Determine, whether star A, or the close binary (i.e. stars B and C) were closer to the 

observer during each eclipsing event. Write your answer in the table on the answer 

sheet. (5 p) 

c) Using the table above, calculate (1) the dimensionless radius of each star relative to the 

semi-major axis of the outer orbit (𝑅A,B,C 𝑎2⁄ ), (2) the ratio of the semi-major axes of the 
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two orbits (𝑎1 𝑎2⁄ ) and (3) the mass ratio of stars B and C (𝑞1 = 𝑚C 𝑚B⁄ ). Hint: Use at least 

four decimal place accuracy in your calculations. Be cautious, it may not be possible to use 

all theoretically possible contact combinations with a given limited accuracy of time data.

 (30 p) 

d) Based on the results obtained above, calculate the outer mass ratio (𝑞2 = 𝑚BC 𝑚A⁄ ). (8 p) 

ii. Dynamical determination of the stellar masses using radial velocity (RV) and eclipse timing 

variations (ETV) measurements 

To obtain RV data, ground-based spectroscopic follow up observations were carried out with four 

different instruments. Only the lines of star A were detectable in all spectra. Plotting all the 

measurements against time, the RV curve was nicely fitted in the following form: 

𝑉rad,A = 𝑉𝛾 + 𝐾A sin 𝜙RV, 

where 𝑉𝛾  is the systemic velocity and 𝐾𝐴 is the velocity amplitude: 

𝑉𝛾 = 6.993 ± 0.011 km s−1, 𝐾A = 37.195 ± 0.053 km s−1, 

𝑃2 = 45.4711 ± 0.0002 d, 𝜙RV =
2𝜋

𝑃2
[𝑡 − (2455522.7318 ± 0.0095)]. 

Furthermore, the researchers determined the mid-times of the regular eclipses of the close binary 

(formed by stars B and C), and found that the occurrence of for example the eclipsing minima 

belonging to the Nth orbital revolution can be described by the simple expression: 

𝑇𝑁 = 𝑇0 + 𝑃1𝑁 + 𝐴ETV sin (
2𝜋

𝑃2
𝑃1𝑁 + 𝜙0), 

where 

𝑇0 = BJD 2455051.23607 ± 5 × 10−5, 𝑃1 = 0.9056768 ± 3 × 10−7 d, 

𝐴ETV = 0.001446 ± 0.000110 d,  𝜙0 = −0.76779 ± 0.01937 rad. 

In this expression AETV is the amplitude of the eclipse timing variation, 𝑇0 denotes the mid-eclipse 

time of the reference (zeroth) primary eclipse, and N is the cycle number, which is an integer for 

primary eclipses (i.e. when the slightly fainter star C eclipses star B), and half-integer for secondary 

ones (i.e. when star B eclipses star C). 

Determine (1) again the mass ratio (𝑞2 = 𝑚BC 𝑚A⁄ ) of the centre of mass of the inner binary and 

star A using only the results obtained in point ii., (2) the mass of component A (𝑚A) and (3) the 

total mass of the inner, close binary (𝑚BC). Calculate the errors for (1), (2), and (3) in masses. Hint: 

You can save much time by expressing the masses in solar mass and the orbital separations either 

in solar radius or au. (22 p) 

iii. Using results obtained in questions 1 and 2, determine the masses of stars B and C respectively and 

calculate the physical dimensions of all three stars (i.e. stellar radii in physical units). (15 p) 


