
Data Analysis: Instructions

• Do not touch envelopes until the start of the examination.

• The data analysis examination lasts for 3 hours and is worth a total of 125 marks.

• There are Answer Sheets for carrying out detailed work and Working Sheets for rough
work, which are already marked with your student code and question number.

• Use only the answer sheets for a particular question for your answer. Please
write only on the printed side of the sheet. Do not use the reverse side. If you
have written something on any sheet which you do not want to be evaluated, cross it out.

• Use as many mathematical expressions as you think may help the evaluator to better
understand your solutions. The evaluator may not understand your language. If it is
necessary to explain something in words, please use short phrases (if possible in English).

• You are not allowed to leave your work desk without permission. If you need any assistance
(malfunctioning calculator, need to visit a restroom, etc.), please draw the attention of the
supervisor.

• The beginning and end of the examination will be indicated by the supervisor. The
remaining time will be displayed on a clock.

• At the end of the examination you must stop writing immediately. Put everything back
in the envelope and leave it on the table.

• Once all envelopes are collected, your student guide will escort you out of the examination
room.

• A list of constants and useful relations are included in the envelope.
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Data Analysis 1: ‘Distance to the Large Magellanic Cloud’

In 2019 an international collaboration led by Polish astronomers measured, with very high
precision and accuracy, the distance to the Large Magellanic Cloud (LMC), a satellite galaxy
of the Milky Way. In this way they set the zero point of the extragalactic distance scale,
which allowed for a very precise measurement of the Hubble constant. Their method involved
measuring the distances to 20 eclipsing binary stars in the LMC, using the concept of the surface
brightness SV of a star defined as:

SV = mV + 5 log10 θ,

where mV is the magnitude of a star in the optical V band and θ is the angular diameter of the
star on the sky in milliarcseconds (mas).

The quantity SV can be understood as the magnitude of a star with an angular diameter of
1 mas. An empirical relation has been established between SV and the colour index (mV −mK),
where mV and mK are magnitudes in the V -band and infrared K-band. This is shown in the
figure below for giant stars of spectral types G and K.
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Using this relation, the distance to an eclipsing binary system can be determined by deriving
the physical radii of the components (using photometry and spectroscopy), and comparing these
with the angular diameters predicted by the SV – (mV −mK) relation.

The table below gives the parameters of three detached eclipsing binary stars. R1 and R2 are
the radii of each component, V1+2 and K1+2 are the total brightness in magnitudes of the binary
in the V - and K-bands, and L2/L1 is the luminosity ratio of the components in each band.

source ID R1R1R1 [R⊙R⊙R⊙] R2R2R2 [R⊙R⊙R⊙] V1+2V1+2V1+2 [mag] K1+2K1+2K1+2 [mag] L2/L1L2/L1L2/L1 (VVV ) L2/L1L2/L1L2/L1 (KKK)
OGLE LMC-ECL-03160 17.03 37.42 16.73 14.10 2.80 4.23
OGLE LMC-ECL-10567 24.60 36.64 16.15 13.83 1.41 1.99
OGLE LMC-ECL-18365 37.30 15.94 16.27 14.01 0.206 0.188
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Apply the method outlined above to the three eclipsing binary systems and calculate the distance
to the LMC in kiloparsecs. Estimate the total error of the result. Assume that the fitting of the
SV – (mV −mK) relation contributes to a bias of up to 0.8% in all measurements simultaneously.

(Total: 50 points)

Hint: in your calculations keep at least three significant figures and two decimal places. Assume
that interstellar extinction is negligible and that the angular size of the LMC is small.
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Solution

Distance calculation

The information from the table can be used to derive individual magnitudes of both compo-
nents according to equations:

m1 = m1+2 + 2.5 log10(1 + L2/L1)

m2 = m1+2 + 2.5 log10(1 + L1/L2).

We will use the third system (OGLE LMC-ECL-18365) as an example to demonstrate the
calculations in detail. The values for this system are as follows:

Magnitudes: mV,1 = 16.47 mag, mK,1 = 14.20 mag, mV,2 = 18.19 mag, mK,2 = 16.01 mag.
Colours: (mV −mK)1 = 2.27 mag, (mV −mK)2 = 2.18 mag.

The second step is to determine the surface brightness SV for both components using the
figure. A least square fit to the data in the figure results in a linear function:

SV = 1.346 ((mV −mK)− 2.407) + 5.869 [mag], or

SV = 1.346(mV −mK) + 2.629 [mag].

Uncertainties of the coefficients are 1.346 ± 0.017 mag and 2.63 ± 0.04 mag.
For this system, this gives SV,1 = 5.69 mag and SV,2 = 5.57 mag.

However, participants will have two other ways of determining SV .
1) The first way is a graphical way by using a ruler and a pencil in order to draw the ’best-fit’
line on the figure. Then SV follows from an intersection of the x = (mV −mK) vertical line and
the ’best-fit’ line.
2) The second way is to determine the coefficients of the best-fit line y = ax + b by using
coordinates of two points on the figure. The points should be far from each other.
For example, the coordinates of the second and the penultimate points are: (x1, y1) = (2.07,
5.41) and (x2, y2) = (2.71, 6.28). This results in:

a =
y2 − y1
x2 − x1

= 1.36

b =
y1x2 − y2x1
x2 − x1

= 2.60

Using these coefficients we have: SV,1 = y = 2.27 · a + b = 5.69 mag and SV,2 = y =
2.18 · a+ b = 5.56 mag, so within 0.01 mag of the ’precise’ results.

The third step is to calculate angular diameters of components by using the equation pre-
sented in the problem. By modifying the equation defining SV we obtain:

θ = 100.2(SV −mV )

Subsequently we get: θ1 = 100.2(5.69−16.47) = 0.00698 mas and θ2 = 100.2(5.56−18.19) = 0.00298
mas.

The fourth step is to calculate the distance to each target. As components form a physical
binary, their distances should be very similar. This is an independent check of the method and
calculations. As the angles under which we see stellar discs are very small (sin θ ≈ θ) we can
safely use a linear relation between the angular and physical diameters of an object. We therefore
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calculate the distance D as D = kR/θ, where θ is expressed in mas, R in solar radii and k is a
conversion factor. The conversion factor results from a fraction (2R⊙/1 kpc)/(1 mas/1 rad) =
(2R⊙/1 AU) = 9.30 · 10−3.

The distances for the third system are D1 = 9.30 · 10−3 · 37.30/0.00698 = 49.70 kpc and
D2 = 9.30 · 10−3 · 15.94/0.00298 = 49.75 kpc.

We then repeat the calculation following the same scheme for the first and second systems,
obtaining for the first system D1 = 49.33 kpc and D2 = 49.07 kpc, and for the second system
D1 = 49.56 kpc and D2 = 49.30 kpc. The unweighted mean of all distances is 49.45 kpc.

Uncertainties

’Statistical’ part.
The standard deviation of the sample is s = 0.24 kpc. The standard error of the mean is s/

√
6

= 0.09 kpc.
OR:
The mean distances to the three eclipsing binaries are: 49.73 kpc, 49.20 kpc and 49.443 kpc.
The standard deviation is s=0.22 kpc, and the standard error of the mean is s/

√
3=0.13 kpc.

’Systematic’ part.
All distances are inversely proportional to angular diameters derived from the SV – (mV −
mK) relation. Thus their accuracy is limited by the precision of the relation. That gives the
’irreducible’ part of the error: 0.008 · 49.45 = 0.40 kpc.

Finally: the distance is 49.45± 0.09± 0.40 kpc; the uncertainty is completely dominated by
the precision of the SV – (mV −mK) relation.

Author’s suggestion of scoring

A full proper solution is scored with 50 points.

Individual scores:
Correct formulas for individual magnitudes: 4 p
Derivation of V and K magnitudes for 6 components: 6 p
Determination of the trend line of Sv from the figure (by line fitting or by ruler): 7 p
Calculation of the SV quantity for 6 components: 6 p
Correct formula for angular diameter: 2 p
Determination of angular diameters of 6 components: 6 p
Correct formula for the distance calculation 4 p
Calculation of distances to 6 components: 6 p
Calculation of the final distance: 3 p
Errors: ’statistical’: 3 p
Errors: ’systematic’: 3 p
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Data Analysis 2: ‘Isolated black hole’

In 2022, two independent groups reported the discovery of an isolated black hole based on
observations of the gravitational microlensing event OGLE-2011-BLG-0462. In this problem, we
will analyze data from the Hubble Space Telescope to reproduce their findings.

Gravitational microlensing occurs when the light of a distant star (the ‘source’) is bent
and magnified by the gravitational field of an intervening object (the ‘lens’). The characteristic
angular scale of gravitational microlensing events, called the angular Einstein radius θE, depends
on the mass M and distance Dℓ from the Earth to the lens:

θE =

√
4GM

c2
Ds −Dℓ

DsDℓ
,

where Ds is the distance to the source star. For typical microlensing events observed in the
Milky Way, the source stars are in the Galactic bulge, near the Galactic center, so Ds ≈ 8 kpc.

(a) Calculate the angular Einstein radius in milliarcseconds (mas) for an example lens of 1M⊙
located at a distance of 1 kpc. (2 points)

Suppose that at time t the lens and the source are separated by an angle θ ≡ u(t)θE on the sky.
Two images of the source are created on a line through the positions of the source and the lens,
at angular distances θ+ and θ− from the lens given by:

θ± =
1

2

(
u±

√
u2 + 4

)
θE.

These two images are magnified, relative to the unlensed brightness of the source. The absolute
magnification of the images is:

A± =
1

2

(
u2 + 2

u
√
u2 + 4

± 1

)
.

The image below shows the geometry of the event. The position of the lens is marked as L, the
unlensed position of the source is marked as S, while A+ and A− mark the positions of the two
images of the source. The dashed circle has a radius of one Einstein radius.

θ
θ+

θ−

A+

A−
LS
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(b) Current telescopes cannot normally resolve this pair of images, but only measure the
position of the image centroid, i.e. the brightness-weighted mean of the positions of the
two images. Derive an expression for the angular separation θc of the image centroid
relative to the lens as a function of u and θE. (8 points)

(c) Derive an expression for the source deflection ∆θ, i.e. the difference between the location
of the centroid and the unlensed position of the source, as a function of u and θE. What
is the source deflection when the lens and the source are nearly perfectly aligned (u ≈ 0)?

(4 points)

The source and lens are moving relative to each other in the sky. Thus, both the total magnifi-
cation of the images and the position of the centroid changes with time, resulting in observable
photometric and astrometric microlensing effects. For now, we assume that the source-lens
relative motion is rectilinear.

The plot below shows the light curve of the gravitational microlensing event OGLE-2011-BLG-
0462, discovered by the OGLE sky survey led by astronomers from the University of Warsaw.
The solid line shows the best-fitting light curve model. The Einstein timescale of the event, i.e.
the time needed for the source to move by one angular Einstein radius relative to the lens, was
tE = 247 days. The event peaked on 21 July 2011 (HJD = 2455763). The minimal separation
between the lens and the source was u0 ≈ 0.
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The table below shows the measured positions of the source star against the background objects
in the East and North directions based on images from the Hubble Space Telescope.

HJD E position (mas) N position (mas)
2455765.2 2.58± 0.13 7.29± 0.16
2455865.7 2.32± 0.12 5.44± 0.24
2456179.7 0.46± 0.14 1.62± 0.08
2456195.8 0.88± 0.36 1.56± 0.77
2456426.2 −1.02± 0.21 −0.94± 0.12
2456587.7 −2.04± 0.07 −1.88± 0.40
2456956.6 −4.54± 0.25 −5.16± 0.29
2457995.2 −11.14± 0.12 −15.14± 0.17
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(d) Plot the measured positions of the source star against the background objects in the East
and North directions as a function of time. (10 points)

(e) The observed motion of the source star is the sum of two effects: rectilinear proper mo-
tion of the source and astrometric microlensing effects. Calculate the proper motion (in
mas/year) of the source and its uncertainty in the East and North directions. (8 points)

(f) After subtracting the effects of proper motion from the data, calculate and plot the total
resultant astrometric deflection as a function of u. Neglect the uncertainty of the proper
motion determination. (20 points)

(g) Analyse the data to determine the angular Einstein radius θE of the event and its uncer-
tainty. (Hint: it may be helpful to linearise the expression for ∆θ).

(16 points)

(h) For long-timescale events such as OGLE-2011-BLG-0462, the rectilinear approximation
of the relative lens-source proper motion is not strictly true and the orbital motion of
the Earth has to be taken into account. This allows measurement of a dimensionless
quantity called the microlensing parallax, defined as πE = (πl − πs)/θE, where πl and πs
are parallaxes of the lens and the source, respectively.

For this event πE = 0.095±0.009. Rearrange the expression for θE given earlier to calculate
the mass of the lens in solar masses and its uncertainty.

(7 points)

(Total: 75 points)
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Solution

(a)

θE =

√
4GM

c2
Ds −Dℓ

DsDℓ
=

√
4GM

auc2

(
au

Dℓ
− au

Ds

)
= 2.7mas

The angular resolution of modern large (D ≈ 10m) optical (λ = 550 nm) telescopes is
θ0 = 1.22λ/D ≈ 14mas. Thus, θ0 ≫ θE, so the images created during microlensing events
cannot be resolved by these telescopes.

(2 points)
(b)

θc =
θ+A+ + θ−A−

A+ +A−
=

1
4

(
u+

√
u2 + 4

)(
u2+2

u
√
u2+4

+ 1
)
+ 1

4

(
u−

√
u2 + 4

)(
u2+2

u
√
u2+4

− 1
)

u2+2
u
√
u2+4

θE

=

(
u+

√
u2 + 4

)(
u2 + 2 + u

√
u2 + 4

)
+
(
u−

√
u2 + 4

)(
u2 + 2− u

√
u2 + 4

)
4(u2 + 2)

θE

=
2u(u2 + 2) + 2u(u2 + 4)

4(u2 + 2)
θE =

2u(2u2 + 6)

4(u2 + 2)
θE =

u(u2 + 3)

u2 + 2
θE

(8 points)
(c)

∆θ = θc − θ =
u(u2 + 3)

u2 + 2
θE − uθE =

u(u2 + 3)− u(u2 + 2)

u2 + 2
θE =

u

u2 + 2
θE

(3 points)

∆θ(u = 0) = 0

so there is no deflection when the lens and the source are nearly perfectly aligned.
(1 points)

(d)
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(10 points, 5 points for each graph)
(e) I will use the fact that the first epoch of astrometric observations was taken close to the

peak of the light curve (that is, u1 ≈ 0, that is, almost no astrometric deflection). Similarly,
astrometric deflection is close to zero for the last epoch. Thus,
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µE ≈ xE,8 − xE,1

t8 − t1
= −2.247± 0.029mas/yr

µN ≈ xN,8 − xN,1

t8 − t1
= −3.674± 0.038mas/yr

(8 points)
No points should be given if a student does not recognize that the deflection is zero during the

first epoch, e.g., they try fitting a straight line to all data points.
(f) I fitted a straight line joining the first and last epoch data and then subtracted it from

astrometric measurements. This is because the observed path of the source on the sky is the
sum of two effects: the rectilinear proper motion of the source and the astrometric deflection:

x(E) = xE1 + (t− t1)µE +∆θ(E)

x(N) = xN1 + (t− t1)µN +∆θ(N),

where xE1 is the East position of the source during the first epoch, xN1 is the North position of
the source during the first epoch, t1 is the time of the first observation, and ∆θ(E) and ∆θ(N)
is the astrometric deflection due to microlensing in East and North direction, respectively.
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Figure 7: The blue lines join the first and the last epoch data points. The source would move
along these lines if there wasnt’t any black hole in front of it. However, the position of the source
that was observed is deflected due to microlensing effects by the black hole.

Thus, the astrometric deflection during ith epoch is:

∆θ(E)i = xEi − xE1 − (ti − t1)µE

∆θ(N)i = xNi − xN1 − (ti − t1)µN

and the total deflection is:
∆θi =

√
∆θ(E)2i +∆θ(N)2i .

I will also use the fact that u0 ≈ 0, so u = (t− t0)/tE , where t0 = 2455763 is the peak time.
Results of my calculations are shown in the table below.
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Figure 8: These figures show the astrometric deflection in East and North directions induced by
the black hole. (Students are not required to make these plots.)
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Figure 9: Total astrometric deflection as a function of u. Students are asked to make this plot
in part (f).

Epoch u ∆θ (E,mas) ∆θ (N,mas) ∆θ (mas)
1 0.01 0.00± 0.13 −0.00± 0.16 0.00± 0.21
2 0.42 0.36± 0.12 −0.84± 0.24 0.91± 0.27
3 1.69 0.43± 0.14 −1.50± 0.08 1.56± 0.16
4 1.75 0.95± 0.36 −1.40± 0.77 1.69± 0.85
5 2.69 0.47± 0.21 −1.58± 0.12 1.65± 0.24
6 3.34 0.44± 0.07 −0.90± 0.40 1.00± 0.41
7 4.83 0.21± 0.25 −0.47± 0.29 0.51± 0.38
8 9.04 0.00± 0.12 −0.00± 0.17 0.00± 0.21

(20 points)
(g) We would like to fit the function ∆θ = u

u2+2
θE to the data. Thus, my “new” independent

variable would be x′ = u/(u2+2). Now, I would like to fit the function y′ = θEx
′, where y′ = ∆θ.

Thus

θE =

∑
y′ix

′
i/σ

2
i∑

x
′2
i /σ

2
i

± 1√∑
x

′2
i /σ

2
i

= 4.5± 0.4mas
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Alternative solution:
The gravitational deflection is described by the formula ∆θ = u

u2+2
θE. It can be demon-

strated that this function reaches a local maximum for u =
√
2 with ∆θmax =

√
2
4 θE = 0.354θE.

From the data, we can estimate the maximum deflection of ∆θmax = 1.59 ± 0.14mas. Thus,
θE = 4.5± 0.4mas.

(16 points)
(h)
Let πrel = πl − πs be the relative lens–source parallax. From the definition of the angular

Einstein radius we have

θE =

√
4GM

c2
Ds −Dl

DsDl
=

√
4GM

c2

(
1

Dl
− 1

Ds

)
=

√
4GM

c2au

(
au

Dl
− au

Ds

)
=

√
4GMπrel
c2au

.

From the definition of the microlensing parallax πrel = πEθE , so this equation becomes:

θE =

√
4GMπEθE

c2au
,

and hence

M =
θEc

2AU

4GπE
= 5.8± 0.8M⊙.

The uncerainty on M can be determined from the relation:

∆M

M
=

√(
∆θE
θE

)2

+

(
∆πE
πE

)2

(7 points)
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Grading

a Correct value of θE 2
b Correct formula 8
c Correct formula 4
d Correct plots (5 pts for each plot) 10
e Correct µE within 3σ 3

Correct µE within 5σ 1
Incorrect µE (> 5σ) 0
Uncertainty on µE 1
Correct µN within 3σ 3
Correct µN within 5σ 1
Incorrect µN (> 5σ) 0
Uncertainty on µN 1
No points should be given if the student does not recognize
that the deflection is zero during the first epoch

f Calculation of the impact parameter u for all epochs 4
Calculation of the total deflection 6
Calculation of the uncertainties 5
Graph 5
Grant full points if results are correct for 7 or 8 epochs
Grant 60% points if results are correct for 5 or 6 epochs
Grant 0 points if results are correct for 4 or less than 4 epochs

g Correct result with an estimate of the uncertainty 16
Correct results without the estimate of the uncerainty 8

h Correct result 7
TOTAL 75

Grading of the graphs:

• Students can get 5 pts for each correct graphs

• data points with error bars 3 pts

• axis labels with units, tick labels - 1 pts

• graph is clear, fills the entire area - 1 pts

Grant full points if the graph shows correct data for 7 or 8 epochs. Grant 60% points if the
graph shows correct data for 5 or 6 epochs. Grant 0 points if the graph shows 4 or less than 4
epochs.
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