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(T1) True or False
Determine if each of the following statements is True or False. In the Summary Answersheet, tick
the correct answer (TRUE / FALSE) for each statement. No justifications are necessary for this
question.

(T1.1) 2In a photograph of the clear sky on a Full Moon night with a sufficiently long exposure,
the colour of the sky would appear blue as in daytime.

Solution:

T 2.0

The colour of the clear sky during night is the same as during daytime, since the
spectrum of sunlight reflected by the Moon is almost the same as the spectrum of
sunlight. Only the intensity is lower.

(T1.2) 2An astronomer at Bhubaneswar marks the position of the Sun on the sky at 05:00 UT
every day of the year. If the Earth’s axis were perpendicular to its orbital plane, these
positions would trace an arc of a great circle.

Solution:

T 2.0

If the Earth’s axis were perpendicular to its orbital plane, the celestial equator will
coincide with ecliptic and the Sun will remain along the celestial equator every day.
However, as the Earth’s orbit is elliptical, the true sun would still lead or lag mean
sun by a few minutes on different days of year.

(T1.3) 2If the orbital period of a certain minor body around the Sun in the ecliptic plane is less
than the orbital period of Uranus, then its orbit must necessarily be fully inside the orbit
of Uranus.

Solution:

F 2.0

The semi-major axis of the orbit of the body will be less than that of Uranus. However
the minor body’s orbit may have a high eccentricity, in which case it may go outside
that of Uranus.

(T1.4) 2The centre of mass of the solar system is inside the Sun at all times.

Solution:

F 2.0

The centre of mass of Sun-Jupiter pair is just outside the Sun. Thus, if all gas giants
are on same side of the Sun, the centre of mass of Solar system is definitely outside
the Sun.

(T1.5) 2A photon is moving in free space. As the Universe expands, its momentum decreases.

Solution:

T 2.0

For photons the wavelength increases when the Universe expands.
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(T2) 10Gases on Titan
Gas particles in a planetary atmosphere have a wide distribution of speeds. If the r.m.s. (root
mean square) thermal speed of particles of a particular gas exceeds 1/6 of the escape speed, then
most of that gas will escape from the planet. What is the minimum atomic weight (relative atomic
mass), Amin, of an ideal monatomic gas so that it remains in the atmosphere of Titan?

Given, mass of Titan MT = 1.23× 1023 kg, radius of Titan RT = 2575 km, surface temperature of
Titan TT = 93.7 K.

Solution:

As the gas is monatomic,

3

�2
kBTT ≈

1

�2
mgv

2
rms

3kBTT ≈
Mg

NA
v2rms

∴ vrms ≈

√
3kBNATT

Mg
4.0

50% deduction if 3/2 pre-factor is not used and 1/2 or 1 are used instead.
Full credit if students writes the relation for vrms directly.

To remain in atmosphere,

vrms <
vesc
6

=
1

6

√
2GMT

RT√
3kBNATT

Mg
<

√
GMT

18RT

4.0∴Mg >
54kBNATTRT

GMT

>
54× 1.381× 10−23 × 6.022× 1023 × 93.7× 2.575× 106

6.6741× 10−11 × 1.23× 1023
g

> 13.2 g 1.5

Thus, all gases with atomic weight more than Amin = 13.2 will be retained in the atmosphere

of Titan. 0.5
Half mark for understanding that atomic mass has no units.

Alternative solution

3

�2
kBTT ≈

1

�2
mgv

2
rms

4.0∴ vrms ≈

√
3kBTT
mg

∴ mg >
54kBTTRT

GMT
4.0

mg > 2.19× 10−26 kg 1.0

∴ Amin =
mg

atomic mass unit
=

2.19× 10−26 kg

1.66× 10−27 kg
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Amin = 13.2 1.0

Answers between 13.0 and 13.4 are acceptable with full credit.

(T3) Early Universe
Cosmological models indicate that radiation energy density, ρr, in the Universe is proportional to
(1+z)4, and the matter energy density, ρm, is proportional to (1+z)3, where z is the redshift. The
dimensionless density parameter, Ω, is given as Ω = ρ/ρc, where ρc is the critical energy density
of the Universe. In the present Universe, the density parameters corresponding to radiation and
matter, are Ωr0 = 10−4 and Ωm0 = 0.3, respectively.

(T3.1) 3Calculate the redshift, ze, at which radiation and matter energy densities were equal.

Solution:

ρm0/ρc
ρr0/ρc

=
Ωm0

Ωr0

=
0.3

10−4
= 3000

At ze, both matter density and radiation density were equal.

ρr = ρm

∴ ρr0(1 + ze)
4 = ρm0(1 + ze)

3

2.01 + ze =
ρm0

ρr0
= 3000

∴ ze ' 3000 1.0

Only ze = 2999 and ze = 3000 are acceptable answers.

(T3.2) 4Assuming that the radiation from the early Universe has a blackbody spectrum with a
temperature of 2.732 K, estimate the temperature, Te, of the radiation at redshift ze.

Solution:

As the Universe behaves like an ideal black body, the radiation density will be pro-
portional to the fourth power of the temperature (Stefan’s law).(

Te
T0

)4

=
ρre
ρr0

2.0=
ρr0(1 + ze)

4

ρr0

1.0

(
Te

2.732

)4

= (1 + ze)
4

Te
2.732

= 1 + ze = 3000

Te = 3000× 2.732

Te = 8200 K 1.0

8100 ≤ Te ≤ 8200 gives 1.0; 8200 < Te ≤ 9000 gives 0.5; else 0.

(T3.3) 3Estimate the typical photon energy, Eν (in eV), of the radiation as emitted at redshift
ze.
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Solution:

Wien’s law:

λmax =
0.002898 m K

Te

1.0=
0.002898

8200
m = 354 nm

Eν =
hc

λmax

1.0=
6.62× 10−34 × 3× 108

354× 10−9
J =

5.62× 10−19

1.602× 10−19
eV

1.0Eν = 3.5 eV 1.0

Alternative solution:

Eν = kBTe

2.0= 1.38× 10−23 × 8200 J =
1.13× 10−19

1.602× 10−19
eV

1.0Eν = 0.71 eV 1.0

Use of either Wien’s law or E = kBT gets full credit. Eν = 3kBT/2 or
similar gets no credit. Answers with Eν = 3kBT or Eν = 2.7kBT also get
full credit.

(T4) 10Shadows
An observer in the northern hemisphere noticed that the length of the shortest shadow of a 1.000 m
vertical stick on a day was 1.732 m. On the same day, the length of the longest shadow of the
same vertical stick was measured to be 5.671 m.

Find the latitude, φ, of the observer and declination of the Sun, δ�, on that day. Assume the Sun
to be a point source and ignore atmospheric refraction.

Solution:

As the longest shadow of the Sun on the given day is of finite length, the Sun is circumpolar
for this observer on this day. 2.0

O

A

S

θ

φ

90− δ�

90− δ�

θ2
θ1

In the figure above, the left panel shows the shadow OS formed by stick OA (of length 1.000 m),
and the right panel shows the Sun’s location in two cases.
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For an altitude θ of the Sun,

tan θ =
OA

OS
=

1.000 m

OS

∴ cot θ = OS (in metres) 1.0

Let θ1 and θ2 be altitude in two extreme cases.

θ1 = 180◦ − φ− (90◦ − δ�) = 90◦ − φ+ δ� 1.0

cot(90◦ − φ+ δ�) = 1.732

∴ tan(φ− δ�) = 1.732

φ− δ� = tan−1(1.732) = 60◦ = 1.047 rad 1.5

θ2 = φ− (90◦ − δ�) = φ− 90◦ + δ� 1.0

cot(φ− 90◦ + δ�) = 5.671

∴ tan(φ− 90◦ + δ�) =
1

5.671

φ+ δ� = tan−1
(

1

5.671

)
+ 90◦ = 100◦ = 1.745 rad 1.5

Solving,

φ = 80◦ = 1.396 rad 1.0

δ� = 20◦ = 0.349 rad 1.0

Given high accuracy of shadow length, only ±0.5◦ is allowed.

One can also solve the question by manipulating tan(φ− δ�) and tan(φ+ δ�), to get tan(φ)
and tan(δ�).

(T5) 10GMRT beam transit
Giant Metrewave Radio Telescope (GMRT), one of the world’s largest radio telescopes at metre
wavelengths, is located in western India (latitude: 19◦6′N, longitude: 74◦3′ E). GMRT consists
of 30 dish antennas, each with a diameter of 45.0 m. A single dish of GMRT was held fixed with
its axis pointing at a zenith angle of 39◦42′ along the northern meridian such that a radio point
source would pass along a diameter of the beam, when it is transiting the meridian.

What is the duration Ttransit for which this source would be within the FWHM (full width at half
maximum) of the beam of a single GMRT dish observing at 200 MHz?

Hint: The FWHM size of the beam of a radio dish operating at a given frequency corresponds
to the angular resolution of the dish. Assume uniform illumination.

Solution:

As the dish is pointed towards northern meridian at zenith angle of 39.7◦, altitude of the
centre of the beam is

a = 90.00◦ − z = 90.00◦ − 39.70◦ = 50.30◦ 1.0
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Thus, declination of the source should be,

δ = 90.00− a+ φ = 90.00◦ − 50.30◦ + 19.10◦ = 58.80◦ 2.0

Declination = ZA + Latitude also gets full credit.

FWHM beam size (for uniform illumination) will be given by

θ =
1.22λ

D
1.5

=
1.22c

Dν
=

1.22× 2.998× 108

45.0× 2× 108

= 0.0406 rad

θ = 2.33◦ 1.5

Ttransit =
θ × 3.99 min

cos δ
3.0

=
2.33× 3.99 min

cos 58.8

Ttransit = 17.9 min 1.0

• Use of 4 min per degree is also acceptable.

• Missing cos δ gets a penalty of 2.0.

(T6) Cepheid Pulsation
The star β-Doradus is a Cepheid variable star with a pulsation period of 9.84 days. We make
a simplifying assumption that the star is brightest when it is most contracted (radius being R1)
and it is faintest when it is most expanded (radius being R2). For simplicity, assume that the star
maintains its spherical shape and behaves as a perfect black body at every instant during the entire
cycle. The bolometric magnitude of the star varies from 3.46 to 4.08. From Doppler measurements,
we know that during pulsation the stellar surface expands or contracts at an average radial speed
of 12.8 km s−1. Over the period of pulsation, the peak of thermal radiation (intrinsic) of the star
varies from 531.0 nm to 649.1 nm.

(T6.1) 7Find the ratio of radii of the star in its most contracted and most expanded states
(R1/R2).

Solution:

We first find flux ratio and then use Stefan’s law to compare the fluxes.

m1 −m2 = −2.5 log

(
F1

F2

)
1.0

∴
F1

F2
= 10−0.4(m1−m2) = 10−0.4(3.46−4.08)

= 1.77 1.0

Li = 4πR2
i σT

4
i 1.0

∴ F1 =
4πR2

1σT
4
1

4πD2
F2 =

4πR2
2σT

4
2

4πD2
1.0
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F1

F2
=
R2

1

R2
2

× T 4
1

T 4
2

R1

R2
=

√
F1

F2
×
(
T2
T1

)2

From Wien’s displacement law,
T2
T1

=
λ1
λ2

. 1.0

∴
R1

R2
=

√
F1

F2
×
(
λ1
λ2

)2

1.0

=
√

1.77×
(

531.0

649.1

)2

R1

R2
= 0.890 1.0

Acceptable range: ±0.010.

(T6.2) 3Find the radii of the star (in metres) in its most contracted and most expanded states
(R1 and R2).

Solution:

R2 −R1 = v × P/2 2.0

R2 −R1 = 12.8× 103 × 86 400× 9.84

2
m

(1− 0.890)R2 = 5.441× 109 m

∴ R2 = 4.95× 1010 m 0.5

R1 = 4.41× 1010 m 0.5

Acceptable range: ±0.02× 1010 m for both.

(T6.3) 5Calculate the flux of the star, F2, when it is in its most expanded state.

Solution:

To get the absolute value of flux (F2) we must compare it with observed flux of the
Sun.

m2 −m� = −2.5 log

(
F2

F�

)
∴ F2 = F�10−0.4(m2−m�) 3.0

=
L�

4πa2⊕
× 10−0.4(4.08+26.72)

=
3.826× 1026 × 4.7863× 10−13

4π(1.496× 1011)2
W m−2

F2 = 6.51× 10−10 W m−2 2.0

Acceptable range: ±0.04× 10−10 W m−2.
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(T6.4) 5Find the distance to the star, Dstar, in parsecs.

Solution:

Dstar =

√
L2

4πF2
=

√
R2

2σT
4
2

F2
= R2T

2
2

√
σ

F2
2.0

Wien’s law: T2 =
2.898× 10−3 m K

λ2
1.0

Dstar = 4.95× 1010 ×
(

2.898× 10−3

649.1× 10−9

)2
√

5.670× 10−8

6.51× 10−10

2.0∴ Dstar = 9.208× 1018 m = 298 pc

Acceptable range: 298± 2pc (depends on truncation).

(T7) Telescope optics
In a particular ideal refracting telescope of focal ratio f/5, the focal length of the objective lens
is 100 cm and that of the eyepiece is 1 cm.

(T7.1) 4What is the angular magnification, m0, of the telescope? What is the length of the
telescope, L0, i.e. the distance between its objective and eyepiece?

Solution:

The magnification will be given by,

m0 =
fo
fe

1.0

=
100

1
= 100 1.0

The magnification is m0 = 100

Length of the telescope will be

L0 = fo + fe 1.0

= 100 + 1 = 101 cm 1.0

The telescope length will be L0 = 101 cm

Exact answer required for credit.

An introduction of a concave lens (Barlow lens) between the objective lens and the prime focus is a
common way to increase the magnification without a large increase in the length of the telescope.
A Barlow lens of focal length 1 cm is now introduced between the objective and the eyepiece to
double the magnification.

(T7.2) 6At what distance, dB, from the prime focus must the Barlow lens be kept in order to
obtain this desired double magnification?

Solution:

We use the following sign convention. Lens is the origin. Direction along the direction
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of light is taken as positive. The lens formula is
1

f
=

1

v
− 1

u
(f is positive for convex

lens and negative for concave lens). Magnification is m =
v

u
. Solutions using other

sign conventions are acceptable.

Let v be image distance from the Barlow lens.

1

fB
=

1

v
− 1

u
1.0

Distance of Barlow lens, dB, before the prime focus is same as the object distance,
u, in this case. 1.0

1

fB
=

1

v
− 1

dB

Also, mB = 2 =
v

u
=

v

dB
0.5

∴
1

dB
=

2

v
1.0

∴
1

−1
=

1

v
− 2

v

−1 =
−1

v
v = 1 cm

dB =
v

2
=

1 cm

2
= 0.5 cm 2.5

The positive sign for dB indicates that the Barlow lens was introduced 0.5 cm before
the prime focus.

(T7.3) 4What is the increase, ∆L, in the length of the telescope?

Solution:

The increase in the length will be,

∆L = v − dB 2.0

= 1.0− 0.5 = 0.5 cm 2.0

Thus, the length will be increased by ∆L = 0.5 cm

A telescope is now constructed with the same objective lens and a CCD detector placed at the
prime focus (without any Barlow lens or eyepiece). The size of each pixel of the CCD detector is
10 µm.

(T7.4) 6What will be the distance in pixels between the centroids of the images of the two stars,
np, on the CCD, if they are 20′′ apart on the sky?

Solution:

Plate scale at prime focus is given by,

s =
1

fo
=

1 rad

1 m
= 0.206 265 arcsec/µm 2.0
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Since each pixel is 10 µm in size,

sp = 10× 0.206 arcsec/µm = 2.06 arcsec/pixel 2.0

Two stars will be separated by,

np =
20′′

2.06′′
pixels ' 10 pixels 2.0

Acceptable range: 9.5 to 10.5 pixels.

(T8) U-band photometry
A star has an apparent magnitude mU = 15.0 in the U -band. The U -band filter is ideal, i.e., it has
perfect (100%) transmission within the band and is completely opaque (0% transmission) outside
the band. The filter is centered at 360 nm, and has a width of 80 nm. It is assumed that the star
also has a flat energy spectrum with respect to frequency. The conversion between magnitude, m,
in any band and flux density, f , of a star in Jansky (1 Jy = 1× 10−26 W Hz−1 m−2) is given by

f = 3631× 10−0.4mJy

(T8.1) 8Approximately how many U -band photons, N0, from this star will be incident normally
on a 1 m2 area at the top of the Earth’s atmosphere every second?

Solution:

The U -band is defined as (360± 40) nm. Thus, the maximum, minimum and average
frequencies of the band will be,

νmax =
c

λmax
= 9.369× 1014 Hz

νmin = 7.495× 1014 Hz

νavg = 8.432× 1014 Hz

∆ν = νmax − νmin

= 1.874× 1014 Hz 2.0

fst1 = 3631× 10−0.4×15

= 3.631 mJy = 3.631× 10−29 W Hz−1 m−2 2.0

Now, N0 × hνavg = ∆ν × fst1 ×A×∆t 2.0

where, A = 1 m2 & ∆t = 1 s

∴ N0 =
1.874× 1014 × 3.631× 10−29

6.626× 10−34 × 8.432× 1014

' 12180 2.0

Exact calculation including integration is accepted with full credit (exact
answer: 12190).
Accepted range: 12180± 200.
Using flat spectrum for ∆λ instead of ∆ν is considered a major conceptual
error, and will incur penalty of 2.0 marks.

This star is being observed in the U -band using a ground based telescope, whose primary mirror
has a diameter of 2.0 m. Atmospheric extinction in U -band during the observation is 50%. You
may assume that the seeing is diffraction limited. Average surface brightness of night sky in
U -band was measured to be 22.0 mag/arcsec2.
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(T8.2) 8What is the ratio, R, of number of photons received per second from the star to that
received from the sky, when measured over a circular aperture of diameter 2′′?

Solution:

Let us call sky flux per square arcsec as Φ and total sky flux for the given aperture
as φsky. Let total star flux be φst.

φsky = AΦ = π × (1 arcsec)2 × Φ = πΦ 3.0

∴ msky = 22.0 + 2.5 log10

(
Φ

φsky

)
1.0

= 22.0 + 2.5 log10

(
�Φ

π�Φ

)
= 22.0− 2.5 log10 (π)

msky = 20.76 mag 1.0

As extinction is 50% 1.0

R =
φst2
φsky

=
0.5φst1
φsky

= 0.5× 10(20.76−15)/2.5

' 100 2.0

Accepted range: ±5.
A student may also calculate number of photons incident per second per
metre square in this case and then compare it with the answer in the first
case to get the correct ratio.

(T8.3) 4In practice, only 20% of U -band photons falling on the primary mirror are detected. How
many photons, Nt, from the star are detected per second?

Solution:

Nt × 1 m2 = N0 × 0.5× 0.2×At 2.0

Nt = 12180× 0.5× 0.2× π
(

2.0

2

)2

= 1233π 1.0

Nt ' 3813 1.0

Accepted range (3813± 50).

(T9) Mars Orbiter Mission
India’s Mars Orbiter Mission (MOM) was launched using the Polar Satellite Launch Vehicle
(PSLV) on 5 November 2013. The dry mass of MOM (body + instruments) was 500 kg and
it carried fuel of mass 852 kg. It was initially placed in an elliptical orbit around the Earth with
perigee at a height of 264 km and apogee at a height of 23 904 km, above the surface of the Earth.
After raising the orbit six times, MOM was transferred to a trans-Mars injection orbit (Hohmann
orbit).

The first such orbit-raising was performed by firing the engines for a very short time near the
perigee. The engines were fired to change the orbit without changing the plane of the orbit and
without changing its perigee. This gave a net impulse of 1.73× 105 kg m s−1 to the satellite. Ignore
the change in mass due to burning of fuel.

(T9.1) 14What is the height of the new apogee, ha, above the surface of the Earth, after this
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engine burn?

Solution:

Let apogee and perigee distances be ra and rp respectively.

rp = R⊕ + hip = (6371 + 264) km = 6635 km 1.0

ra = R⊕ + hia = (6371 + 23904) km = 30 275 km 1.0

Conservation of energy and angular momentum gives

E = −GmM⊕
rp + ra

Total energy at perigee

1

2
mvp

2 − GmM⊕
rp

= E = −GmM⊕
rp + ra

1

2
vp

2 =
GM⊕
rp

(
1− rp

rp + ra

)
∴ vp =

√
2
GM⊕
ra + rp

ra
rp

2.0

=

√
2× 6.674× 10−11 × 5.972× 1024 × 3.0275× 107

6.635× 106 × (3.0275 + 6.635× 106)

= 9.929 km s−1 1.0

As the engine burn is just 41.6 s, we assume that the entire impulse is applied instan-
taneously at perigee. The impulse is J = 1.73× 105 kg m s−1. Note that the total
mass of MOM must include the fuel, so we have to use
m = 500 + 852 = 1352 kg. 1.0
Change in velocity due to impulse at perigee is

∆v =
J

m
=

1.73× 105

1352
= 128.0 m s−1 1.0

The new velocity will be given by (we use ′ symbol to denote quantities after the first
orbit-raising maneuvre)

v′p = vp + ∆v = 10.06 km s−1 1.0

The perigee remains unchanged. So we get r′p = rp. 1.0
Since the satellite is moving faster, the new apogee will be higher.

v′p =

√
2GM⊕

r′a
r′p(r′a + r′p)

∴ 1 +
r′p
r′a

=
2GM⊕

(v′p)2 × r′p
2.0

=
2× 6.674× 10−11 × 5.972× 1024

(10.06× 103)2 × 6.635× 106
= 1.188

r′a =
6635

0.188
= 35 380 km 2.0

ha = 35380− 6371

= 29 009 km 1.0
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Acceptable range: ±150 km

(T9.2) 6Find eccentricity (e) of the new orbit after the burn and new orbital period (P ) of MOM
in hours.

Solution:

As seen above,

r′p
r′a

= 0.188 =
1− e
1 + e

1.0

∴ e =
1− 0.188

1 + 0.188
= 0.683 1.0

Acceptable range: ±0.002
The new orbital semi-major axis and orbital period will be,

a′ =
r′a + r′p

2
1.0

=
35380 + 6635

2
= 20 933 km 1.0

P = 2π

√
a′3

GM⊕
1.0

= 2π

√
(2.0933× 107)3

6.674× 10−11 × 5.972× 1024
= 30 136 s = 8.37 h 1.0

Acceptable range: ±0.1 h

(T10) Gravitational Lensing Telescope
Einstein’s General Theory of Relativity predicts bending of light around massive bodies. For
simplicity, we assume that the bending of light happens at a single point for each light ray, as
shown in the figure. The angle of bending, θb, is given by

θb =
2Rsch

r
where Rsch is the Schwarzschild radius associated with that gravitational body. We call r, the
distance of the incoming light ray from the parallel x-axis passing through the centre of the body,
as the “impact parameter”.

x-axis

r

θb

A massive body thus behaves somewhat like a focusing lens. The light rays coming from infinite
distance beyond a massive body, and having the same impact parameter r, converge at a point
along the axis, at a distance fr from the centre of the massive body. An observer at that point
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will benefit from huge amplification due to this gravitational focusing. The massive body in this
case is being used as a Gravitational Lensing Telescope for amplification of distant signals.

(T10.1) 6Consider the possibility of our Sun as a gravitational lensing telescope. Calculate the
shortest distance, fmin, from the centre of the Sun (in A.U.) at which the light rays can
get focused.

Solution:

The rays travelling closer to the gravitational body will bend more. Thus, we get
shortest convergence point where the rays just grazing the solar surface will meet
each other.

fmin

R�

θb

θb

θb =
2Rsch

R�
' R�
fmin

2.0

∴ fmin =
R2
�

2Rsch
=

R2
�c

2

4GM�
2.0

=
(6.955× 108 × 2.998× 108)2

4× 6.674× 10−11 × 1.989× 1030
m

= 8.188× 1013 m =
8.188× 1013

1.496× 1011
AU

fmin = 547.3 AU 2.0

(T10.2) 8Consider a small circular detector of radius a, kept at a distance fmin centred on the
x-axis and perpendicular to it. Note that only the light rays which pass within a certain
annulus (ring) of width h (where h� R�) around the Sun would encounter the detector.
The amplification factor at the detector is defined as the ratio of the intensity of the light
incident on the detector in the presence of the Sun and the intensity in the absence of
the Sun.

Express the amplification factor, Am, at the detector in terms of R� and a.

Solution:

The following figure needs to be drawn. 1.0

fmin

f2

Detector

a

R�

h θ2
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The light bending from the surface of the Sun (r = R�) will intersect the detector
at its centre, as it is kept at fmin.

The boundary of the detector will be intersected by a light ray with r = R� + h.
This ray will intersect the x-axis at a distance f2.

f2 =
(R� + h)2

2Rsch
2.0

Same argument as in Part 1

For small angles,

a = (f2 − fmin)θ2

=

[
(R� + h)2

2Rsch
−

R2
�

2Rsch

]
2Rsch

(R� + h)
=

2R�h+ h2

R� + h

' 2h 2.0

Let original intensity of the incoming radiation be I0.

The flux at the detector in the presence of Sun is Φ� = I0 2π R� h 1.0

The flux at the detector in the absence of Sun is Φ0 = I0 π a
2 1.0

The amplification is therefore

Am =
Φ�
Φ0

=
I02πR�h

I0πa2
=

R�
a

1.0

(T10.3) 6Consider a spherical mass distribution, such as a dark matter cluster, through which
light rays can pass while undergoing gravitational bending. Assume for simplicity that
for the gravitational bending with impact parameter, r, only the mass M(r) enclosed
inside the radius r is relevant.

What should be the mass distribution, M(r), such that the gravitational lens behaves
like an ideal optical convex lens ?

Solution:

f1 = f2

r1
r2

θ2
θ1

All rays should focus at the same spot. This should be evident from figure drawn on
answersheet or otherwise. 2.0

Let there be two rays with impact parameters r1 and r2. The corresponding distances
of focus will be

fi =
r2i

2rschi
=

r2i c
2

4GM(ri)
2.0

Same argument as in Part 1
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The rquirement f1 = f2 implies

r21
r22

=
M(r1)

M(r2)
1.0

The required mass distribution is: M(r) ∝ r2 1.0

(T11) Gravitational Waves
The first signal of gravitational waves was observed by two advanced LIGO detectors at Hanford
and Livingston, USA in September 2015. One of these measurements (strain vs time in seconds)
is shown in the accompanying figure. In this problem, we will interpret this signal in terms of a
small test mass m orbiting around a large mass M (i.e., m�M), by considering several models
for the nature of the central mass.

The test mass loses energy due to the emission of gravitational waves. As a result the orbit keeps
on shrinking, until the test mass reaches the surface of the object, or in the case of a black hole,
the innermost stable circular orbit – ISCO – which is given by RISCO = 3Rsch, where Rsch is
the Schwarzschild radius of the black hole. This is the “epoch of merger”. At this point, the
amplitude of the gravitational wave is maximum, and so is its frequency, which is always twice
the orbital frequency. In this problem, we will only focus on the gravitational waves before the
merger, when Kepler’s laws are assumed to be valid. After the merger, the form of gravitational
waves will drastically change.

(T11.1) 3Consider the observed gravitational waves shown in the figure above. Estimate the time
period, T0, and hence calculate the frequency, f0, of gravitational waves just before the
epoch of merger.
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Solution:

From the graph, just before the peak of emission, the time period of gravitational
waves is approximately (0.007± 0.004) s.

T0 ≈ 0.007 s 2.0

Acceptable range: 0.003 to 0.011 s

That is, the frequency of the gravitational waves is f0 ≈ 142.86 Hz . 1.0
Acceptable range: 333.33 to 90.91 Hz

Answer given in terms of angular frequency with correct value and units
gains full credit.

(T11.2) 10For any main sequence (MS) star, the radius of the star, RMS, and its mass, MMS, are
related by a power law given as,

RMS ∝ (MMS)α

where α = 0.8 for M� < MMS

= 1.0 for 0.08M� ≤MMS ≤M�
If the central object were a main sequence star, write an expression for the maximum
frequency of gravitational waves, fMS, in terms of mass of the star in units of solar masses
(MMS/M�) and α.

Solution:

Since m�M then, by Kepler’s third law

forbital =
1

2π

√
GM

r3
4.0

Hence the frequency of the gravitational waves is

fgrav = 2forbital =
1

π

√
GM

r3
1.0

The frequency will be maximum when r = RMS. 1.0

For main sequence stars,

RMS

R�
=

(
MMS

M�

)α
∴ RMS = R�

(
MMS

M�

)α
1.0

∴ fMS =
1

π

√
GMMS

R3
�

(
M�
MMS

)3α/2

=
1

π

√
GM�
R3
�

(
M�
MMS

)(3α−1)/2

fMS =
1

π

√
GM�
R3
�

(
MMS

M�

)(1−3α)/2
3.0

(T11.3) 9Using the above result, determine the appropriate value of α that will give the maximum
possible frequency of gravitational waves, fMS,max for any main sequence star. Evaluate
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this frequency.

Solution:

For possible values of α given in the question, the exponent 1−3α
2 is negative. Thus,

if MMS > M�, the frequency will be smaller. Thus, for highest possible frequency
coming from a main sequence star, you should take lowest possible mass i.e. α = 1.0

4.0

fMS,max =
1

π

√
GM�
R3
�

(
MMS

M�

)( 1−3×1
2 )

=
1

π

√
GM�
R3
�
× M�
MMS

2.0

The frequency of gravitational waves will be given by,

fMS,max =
1

π

√
6.674× 10−11 × 1.989× 1030

(6.955× 108)3
× 1

0.08

fMS,max = 2.5 mHz 3.0

Answer given in terms of angular frequency with correct value and units
gains full credit.

(T11.4) 8White dwarf (WD) stars have a maximum mass of 1.44M� (known as the Chandrasekhar
limit) and obey the mass-radius relation R ∝ M−1/3. The radius of a solar mass white
dwarf is equal to 6000 km. Find the highest frequency of emitted gravitational waves,
fWD,max, if the test mass is orbiting a white dwarf.

Solution:

The maximum frequency would be when r = RWD. 1.0

We use the notation RWD� for the radius of a solar mass white dwarf. Then for
white dwarfs

R3
WD = R3

WD�
MWD

M�
1.0

fWD =
1

π

√
GMWD

R3
WD

=
1

π

√
GM�
R3
WD�

MWD

M�
2.0

For maximum frequency, we have to take highest white dwarf mass. 2.0

fWD,max = 2.600× 10−6 ×

√
1.989× 1030

(6000× 103)3
× 1.44

= 2.600× 10−6 × 95.96× 103 × 1.44

fWD,max = 0.359 Hz 2.0

Answer given in terms of angular frequency with correct value and units
gains full credit.

(T11.5) 8Neutron stars (NS) are a peculiar type of compact objects which have masses between
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1 and 3M� and radii in the range 10 – 15 km. Find the range of frequencies of emitted
gravitational waves, fNS,min and fNS,max, if the test mass is orbiting a neutron star at a
distance close to the neutron star radius.

Solution:

fgrav =
1

π

√
GMNS

R3
NS

The lowest possible frequency is when MNS is lowest and RNS is the highest. 2.0

For MNS = M� and R = 15 km, we get

fNS,min = 1.996 kHz 2.0

Similarly, the largest possible frequency is when MNS is the largest and RNS is the
smallest. 2.0

For MNS = 3M� and R = 10 km, we get

fNS,max = 6.352 kHz 2.0

Answer given in terms of angular frequency with correct value and units
gains full credit.

(T11.6) 7If the test mass is orbiting a black hole (BH), write the expression for the frequency of
emitted gravitational waves, fBH, in terms of mass of the black hole, MBH, and the solar
mass M�.

Solution:

For black holes, we have to consider RISCO. 2.0

Hence the equation will be,

fBH =
1

π
×
√

GM�
27R3

sch−�
× M�
MBH

2.0

fBH = 4.396 kHz× M�
MBH

3.0

Answer given in terms of angular frequency with correct value and units
gains full credit.

(T11.7) 5Based only on the time period (or frequency) of gravitational waves before the epoch of
merger, determine whether the central object can be a main sequence star (MS), a white
dwarf (WD), a neutron star (NS), or a black hole (BH). Tick the correct option in the
Summary Answersheet. Estimate the mass of this object, Mobj, in units of M�.

Solution:

We found the frequency of the LIGO-detected wave to be 166.67 Hz just before
merger. As per our analysis above, only black holes can lead to emission in this
frequency range.
Black Hole 2.0

By using corresponding expression,

Mobj =
4396

142.86
M� ≈ 31M� 3.0

Any answer between 13 to 50 will get full credit.
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(T12) Exoplanets
Two major methods of detection of exoplanets (planets around stars other than the Sun) are the
radial velocity (or so-called “wobble”) method and the transit method. In this problem, we find
out how a combination of the results of these two methods can reveal a lot of information about
an orbiting exoplanet and its host star.

Throughout this problem, we consider the case of a planet of mass Mp and radius Rp moving in a
circular orbit of radius a around a star of mass Ms (Ms �Mp) and radius Rs. The normal to the
orbital plane of the planet is inclined at angle i with respect to the line of sight (i = 90◦ would
mean “edge on” orbit). We assume that there is no other planet orbiting the star and Rs � a.

“Wobble” Method:
When a planet and a star orbit each other around their barycentre, the star is seen to move
slightly, or “wobble”, since the centre of mass of the star is not coincident with the barycentre of
the star-planet system. As a result, the light received from the star undergoes a small Doppler
shift related to the velocity of this wobble.

The line of sight velocity, vl, of the star can be determined from the Doppler shift of a known
spectral line, and its periodic variation with time, t, is shown in the schematic diagram below.
In the diagram, the two measurable quantities in this method, namely, the orbital period P and
maximum line of sight velocity v0 are shown.

t

vl

v0

P

(T12.1) 3Derive expressions for the orbital radius (a) and orbital speed (vp) of the planet in terms
of Ms and P .

Solution:

Kepler’s law:

a =

(
GMs

4π2
P 2

)1/3

1.0

Gravitational force provides centripetal acceleration:

vp =

√
GMs

a
0.5

vp =

(
2πGMs

P

)1/3

1.5
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(T12.2) 4Obtain a lower limit on the mass of the planet, Mp,min in terms of Ms, v0 and vp.

Solution:

Momentum conservation:

Mpvp = Msvs 1.5

Observed quantity is v0 = vs sin i. Thus,

Mp,min = Mp sin i =
Msvs sin i

vp
=

Msv0
vp

This is a lower limit on Mp. 2.5

Transit Method:
As a planet orbits its host star, for orientations of the orbital plane that are close to “edge-on”
(i ≈ 90◦), it will pass periodically, or “transit”, in front of the stellar disc as seen by the observer.
This would cause a tiny decrease in the observed stellar flux which can be measured. The schematic
diagram below (NOT drawn to scale) shows the situation from the observer’s perspective and the
resulting transit light curve (normalised flux, f , vs time, t) for a uniformly bright stellar disc.

1 2 3 4

Rp

Rs

bRs

f

t

1
∆

tF

tT

If the inclination angle i is exactly 90◦, the planet would be seen to cross the stellar disc along a
diameter. For other values of i, the transit occurs along a chord, whose centre lies at a distance
bRs from the centre of the stellar disc, as shown. The no-transit flux is normalised to 1 and the
maximum dip during the transit is given by ∆.
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The four significant points in the transit are the first, second, third and fourth contacts, marked
by the positions 1 to 4, respectively, in the figure above. The time interval during the second and
third contacts is denoted by tF, when the disc of the planet overlaps the stellar disc fully. The
time interval between the first and fourth contacts is denoted by tT.

These points are also marked in the schematic diagram below showing a “side-on” view of the
orbit (NOT drawn to scale).

1 2

3

4

a

i

Observer

The measurable quantities in the transit method are P , tT, tF and ∆.

(T12.3) 2Find the constraint on i in terms of Rs and a for the transit to be visible at all to the
distant observer.

Solution:

bRs = a cos i 1.0

Therefore, for visibility, 0 ≤ b ≤ 1⇒ i ≥ cos−1(Rs/a) 1.0

(T12.4) 1Express ∆ in terms of Rs and Rp.

Solution:

Blackbody ⇒ brightness is proportional to area. Since the observer is far away from
the star-planet system, size of silhouette of planet on stellar disc is independent of a.

∆ =

(
Rp

Rs

)2

1.0

(T12.5) 8Express tT and tF in terms of Rs, Rp, a, P and b.

Solution:

Circular orbit ⇒ uniform orbital speed

⇒ t

P
=

aφ

2πa
=

φ

2π
1.0

where φ is the angle subtended by the planet at the centre of the star during transit
(over time t).
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1 2 3 4
bRs

Rs −Rp

l23/2

Rs +Rp

l14/2

a

1 2

3

4

φ14
φ23

l14

l23

(l23/2)2 = (Rs −Rp)2 − (bRs)
2

l23 = 2Rs

√
(1−Rp/Rs)2 − b2 2.0

sin(φ23/2) =
l23/2

a
2.0

⇒ φ23 = 2 sin−1
(
l23
2a

)
= 2 sin−1

Rs

a

√(
1− Rp

Rs

)2

− b2

 1.0

tF =
P

2π
φ23 =

P

π
sin−1

Rs

a

√(
1− Rp

Rs

)2

− b2

 1.0

Similarly,

tT =
P

π
sin−1

Rs

a

√(
1 +

Rp

Rs

)2

− b2

 1.0

(T12.6) 5In the approximation of an orbit much larger than the stellar radius, show that the
parameter b is given by

b =

1 + ∆− 2
√

∆

1 +

(
tF
tT

)2

1−
(
tF
tT

)2


1/2

Solution:

Since Rs � a, use sin−1 x ≈ x. 2.0

tT ≈
P

π

Rs

a

√(
1 +

Rp

Rs

)2

− b2



tF ≈
P

π

Rs

a

√(
1− Rp

Rs

)2

− b2


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Dividing, and putting Rp/Rs =
√

∆,

tF
tT

=

[
(1−

√
∆)2 − b2

(1 +
√

∆)2 − b2

]1/2
1.0

⇒ b =


(1−

√
∆)2 −

(
tF
tT

)2

(1 +
√

∆)2

1−
(
tF
tT

)2


1/2

=

1 + ∆− 2
√

∆

1 +

(
tF
tT

)2

1−
(
tF
tT

)2


1/2

2.0

Expressions lacking the use of approximation Rs/a � 1, but otherwise
correct will get a penalty of 2.0.
Use of approximation with proper justification at a later stage than at
the first step will get full credit.

(T12.7) 3Use the result of part (T12.6) to obtain an expression for the ratio a/Rs in terms of
measurable transit parameters, using a suitable approximation.

Solution:

tT =
P

π

Rs

a

√(
1 +

Rp

Rs

)2

− b2

 1.0

Either substitution of b or elimination of b gets 1.0.

Substituting b and Rp/Rs,

tT =
P

π

Rs

a

√√√√√√√√(1 +
√

∆)2 − 1−∆ + 2
√

∆

1 +

(
tF
tT

)2

1−
(
tF
tT

)2



⇒ tT =
P

π

Rs

a

 4
√

∆

1−
(
tF
tT

)2


1/2

⇒ a

Rs
=

2P∆1/4

π(t2T − t2F)1/2
2.0

Expressions lacking the use of approximation Rs/a � 1, but otherwise
correct will get a penalty of 1.0.
If penalty has already been imposed in part (T12.6), no further penalty
for lack of approximation.

(T12.8) 6Combine the results of the wobble method and the transit method to determine the

stellar mean density ρs ≡
Ms

4πR3
s/3

in terms of tT, tF, ∆ and P .
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Solution:

From part (T12.7)

a = Rs
2P∆1/4

π(t2T − t2F)1/2

From part (T12.1)

a =

(
GMs

4π2
P 2

)1/3

Combining,

GMs

4π2
P 2 =

[
Rs

2P∆1/4

π(t2T − t2F)1/2

]3
3.0

Identifying the two equations for combining gets credit. No credit for
writing only one equation or irrelevant equations.

⇒ ρs ≡
Ms

4πR3
s/3

=
3

4π

4π2

P 2G

8P 3∆3/4

π3(t2T − t2F)3/2
2.0

⇒ ρs =
24

π2G

P (∆)3/4

(t2T − t2F)3/2
1.0

Rocky or gaseous:
Let us consider an edge-on (i = 90◦) star-planet system (circular orbit for the planet), as seen
from the Earth. It is known that the host star is of mass 1.00M�. Transits are observed with
a period (P ) of 50.0 days and total transit duration (tT) of 1.00 hour. The transit depth (∆) is
0.0064. The same system is also observed in the wobble method to have a maximum line of sight
velocity of 0.400 m s−1.

(T12.9) 2Find the orbital radius a of the planet in units of AU and in metres.

Solution:

From Kepler’s third law (with same mass of host star):

a

a⊕
=

(
P

P⊕

)2/3

1.0

a =

(
50.0

365.242

)2/3

× 1 AU = 0.266 AU 0.5

= 0.266× 1.496× 1011 m = 3.97× 1010 m 0.5

(T12.10) 2Find the ratio tF/tT of the system.

Solution:

Edge-on ⇒ b = 0 1.0

tF
tT

=

[
(1−

√
∆)2 − b2

(1 +
√

∆)2 − b2

]1/2
=

1−
√

∆

1 +
√

∆
= 0.8519 1.0
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(T12.11) 8Obtain the mass Mp and radius Rp of the planet in terms of the mass (M⊕) and radius
(R⊕) of the Earth respectively. Is the composition of the planet likely to be rocky or
gaseous? Tick the box for ROCKY or GASEOUS in the Summary Answersheet.

Solution:

From parts (T12.1) and (T12.9)

vp =

√
GM�
a

=

√
6.674× 10−11 × 1.989× 1030

3.97× 1010
= 57.798 km s−1 1.0

Assumption of small planet (Mp � Ms) is valid because ∆ is very small; less dense
planet would make the assumption stronger!

Mp =
Msv0
vp

=
1.989× 1030 × 0.400

5.7798× 104 × 5.972× 1024
M⊕ = 2.30M⊕ 2.0

From part (T12.4),

Rp = Rs

√
∆

From part (T12.7),

a

Rs
=

2P∆1/4

π(t2T − t2F)1/2
=

2P∆1/4

πtT(1− (tF/tT)2)1/2

∴ Rs =
aπtT(1− (tF/tT)2)1/2

2P∆1/4

Combining,

Rp =
aπtT(1− (tF/tT)2)1/2∆1/2

2P∆1/4

=
aπtT(1− (tF/tT)2)1/2∆1/4

2P
2.0

=
3.97× 1010 × π × 1

24 × (1− 0.85192)1/2 × (0.0064)1/4

2× 50.0× 6.371× 106
R⊕

= 1.21R⊕ 1.0

Mean density

ρp =
Mp

4πR3
p/3

=
2.30

(1.21)3
ρ⊕ = 1.3ρ⊕ 1.0

Since mean density is higher than that of Earth, the planet is Rocky . 1.0

Transit light curves with starspots and limb darkening:

(T12.12) 4Consider a planetary transit with i = 90◦ around a star which has a starspot on its
equator, comparable to the size of the planet, Rp. The rotation period of the star is
2P . Draw schematic diagrams of the transit light curve for five successive transits of the
planet (in the templates provided in the Summary Answersheet). The no-transit flux for
each transit may be normalised to unity independently. Assume that the planet does not
encounter the starspot on the first transit but does in the second.
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Solution:

t

f Transit no. 1

t

f Transit no. 2

t

f Transit no. 3

t

f Transit no. 4

t

f Transit no. 5

• No change in the first: 0.5

• Spike in second (width and phase of spike is arbitrary): 1.0

• Height of spike (almost) equal to maximum dip: 0.5

• No change in third: 0.5

• Spike again in fourth: 0.5

• Same phase of spike in second and fourth: 0.5

• No change in 5th: 0.5

(T12.13) 2Throughout the problem we have considered a uniformly bright stellar disc. However,
real stellar discs have limb darkening. Draw a schematic transit light curve when limb
darkening is present in the host star.

Solution:

t

f

Non-flat bottom with central minimum gets 2.0. Curvature of ingress and
egress are tolerated.


